

Product Catalog

Sensors and Solutions for Cutting Force Measurement

Kistler – Your Partner for Efficiency and Quality.

Sensors and systems for the measurement of forces and torques, for the analysis of force-distance and force-time characteristics and for the documentation of quality data in assembly and product testing are only one of the modules of the industry solutions from Kistler Instrumente AG. In addition to assembly and testing technology, we also offer special sensors and monitoring systems for mechanical production, for fuel engines, for automotive engineering, plastic processing and biomechanics.

Numbered among the core competencies at Kistler are development, production and utilization of sensor for the measurement of pressure, force, torque and acceleration. The measurement signals thus acquired can be processed and utilized through Kistler know-how and our electronics systems. The objective is the analysis of physical procedures. These are applied in the control and optimization of processes and in the enhancement of product quality in the manufacturing sector. Each year, Kistler invests 10 % of its revenues in research and development, thus providing innovative and economical solutions at the state-of-the-art of knowledge.

The Kistler Group is comprised of 30 Group companies. These are present around the globe in 30 countries at a total of 53 sites. Selected representatives distribute Kistler products and solutions in more than 30 additional countries.

Crystals form the basis of piezoelectric sensors

Content.

Milling of an impeller with RCD Type 9170A...

Dynamometer Selection Chart	4
Measuring	
Stationary Dynamometers	8 16
Type 9119AA1/9119AA2	8 9
Type 9129AA	10 11
Type 9255C	12
Type 9257B	13
Type 9272	14
Type 9253B22/9253B23	15
Type 9366CC	16
Rotating Dynamometers	17 19
Type 9170A	17
Type 9124B	18
Type 9125A	19
Amplifying and Analyzing	20
Charge Amplifiers	21 22
Type 5080A	21
Type 5070A	22
Data Acquisition System	23
Type 5697A	23
Software	23
Type 2825A	23
Connecting Cables, High Insulation	24
Type 1677A5	24
Type 1679A5	24
Type 1687B5	24
Type 1689B5	24
Connecting Cables, Low Resistance	25
Type 1700A111A2	25
Type 1700A113A2	25
Type 1200A27	25
Measuring Chains	26 27

Dynamometer Overview.

Dynamometers for Measurement of the Cutting Forces

Kistler offers a comprehensive program of dynamometers for the measurement of forces and torques in cutting processes. Many of these measurement devices can be used for various tasks. This provides the user with a maximum amount of flexibility. Stationary dynamometers differ mainly with respect to the direction of the pretension. The thermal energy that arises during cutting processes has a negative influence on the measurement signals. Dynamometers with horizontal pretension act against these negative influences and minimize them. They are therefore outstandingly suitable for measuring the cutting forces. Nonetheless, it is also true that dynamometers with vertical pretension have advantages of their own, e.g. the larger force range.

Selection Table

The adjacent selection table helps the user make a suitable selection. Dynamometers that are specially suitable for a desired machining application are marked with ++ . The dynamometer can also be used for applications that are marked with +. Limitations must be taken into account in such cases, e.g. with respect to accuracy or dynamic behavior.

	Туре	Measurable components	Minimized influences of temperature	Turning	Milling	Drilling/ tapping	Surface grinding	Micro- machining
ρO	9170A	F _x , F _y , F _z , M _z	no		++	++		
rotating	9124B	F _x , F _y , F _z , M _z	no		++	++		
rot	9125A	F _z , M _z	no		+	++		
	9119AA1	F _x , F _y , F _z	yes		++	+	++	++
	9119AA2	F _x , F _y , F _z	yes	++	++	+	++	+
	9129AA	F _x , F _y , F _z	yes	++	++	+	++	
	9257B	F _x , F _y , F _z	no	+	++	+	++	
	9253B	F _x , F _y , F _z	no		+	+	+	
ary	9255C	F _x , F _y , F _z	no		++	+	++	
stationary	9272	F _x , F _y , F _z , M _z	no	+	+	++		
sta	9366CC	F _x , F _y , F _z	no		++	+	+	

++ suitable

+ limited suitability

Measuring.

Measuring with Dynamometers

The measuring element is the core of every measuring chain. This records the physical variable to be measured and forwards it to subsequent devices in the form of a signal. The measuring elements used for the measurement of the forces and torques in the cutting processes are called Dynamometers and are all based on the piezoelectric measurement principle.

As a basic rule, a distinction is to be made between two families of dynamometers. On the one hand, there are the stationary dynamometers, that are mainly set up on the machinery table, while on the other hand there are the rotating Dynamometers – also called RCDs – that are retracted into the spindle via the spindle interface and rotate along with it.

Stationary Dynamometers

A stationary dynamometer is often the connecting element between the machine table of the machine tool and the workpiece. The workpiece is fastened on the dynamometer with which the reaction forces in manufacturing processes such as milling or drilling are measured. Stationary dynamometers are also used for turning applications. These are fitted directly to the turret with corresponding machine adapters. The tool is placed on the dynamometer with a suitable tool holder. Depending on the structure, the forces that arise are recorded by one or more multi-component force sensors and are available at the connector of the dynamometer in the form of charge signals.

Rotating Dynamometers

Rotating dynamometers (RCD) are mounted directly into the machine spindle via the spindle interface. The tool is mounted at the RCD with the aid of a tool holder. The RCD is used mainly in milling and drilling processes. In contrast to stationary dynamometers, only one multi-component sensor is installed in each rotating dynamometer. In addition to the sensor, the rotor also contains the charge amplifiers, i.e. the electronics that converts the charge into voltage, and the telemetry electronics. The measurement data is forwarded to the stationary part of the measuring chain via near-field telemetry, where it is subsequently made available as analog voltage signals.

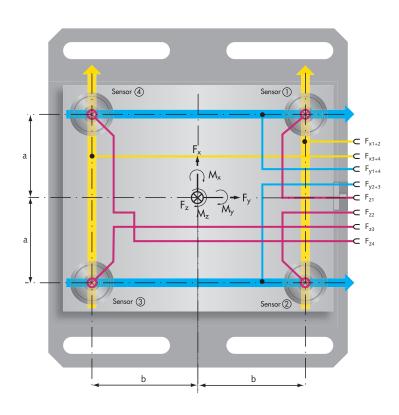
Stationary Dynamometer Type 9129AA

Rotating Dynamometer Type 9170A

Multi-Component Force and Moment Measurement.

Special Feature of Stationary Dynamometers

All stationary 3-component dynamometers have the property of being able to be utilized as both a purely 3-component dynamometer and as a 6-component dynamometer.


This is made possible by the corresponding switching of the four 3-component force sensors in the interior of the dynamometer. The forces F_x , F_y and F_z are directly measured thereby, whereas the torques M_x , M_y and M_z are calculated with the aid of the individual force components and the sensor distances.

Cutting Force Measurement

With respect to the cutting force measurement, in addition to the measurement of the three orthogonal force components F_x , F_y and F_z , only the torque M_z is relevant for the determination of the drilling torque.

General Force Measurement

There are however numerous other measurement tasks in addition to the cutting force measurement for which not only the three components of the resulting force are of interest, but also the three components of the resulting torque vector. This is particularly true in cases where the point of applied force does not change during the measurement, which means that the distances required for the calculation of the torques remain constant.

Calculation of the Three Forces Fx, Fy, Fz and Three Moments Mx, My, Mz

 $F_x = F_{x1+2} + F_{x3+4}$

 $F_{v} = F_{v1+4} + F_{v2+3}$

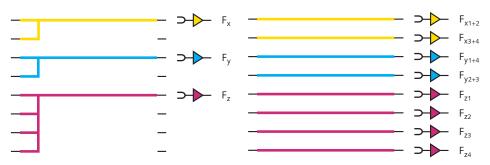
 $F_z = F_{z1} + F_{z2} + F_{z3} + F_{z4}$

 $M_x = b (F_{z1} + F_{z2} - F_{z3} - F_{z4})$

 $M_v = a (-F_{z1} + F_{z2} + F_{z3} - F_{z4})$

 M_z = b ($-F_{x1+2} + F_{x3+4}$) + a ($F_{y1+4} - F_{y2+3}$)

Calculating the Forces and Moments


Three forces F_x , F_y und F_z and the moments M_x , M_y und M_z are calculated with Software DynoWare or analog with the 6-component summing amplifier in the charge amplifier. To calculate the moments, the distance of the sensors must be included.

3-core connecting cable

8-core connecting cable

3 charge amp. channels

8 charge amp. channels

3-component force measurement

In 3-component force measurement, the eight output signals from the dynamometer, as shown in the illustration, are summed in the three-core connecting cable. Three charge amplifiers are needed to convert the charge signal to a proportional output voltage.

6-component force measurement

In 6-component force and moment measurement, the eight output signals are fed directly to the eight charge amplifiers by the eight-core connecting cable. These convert the charging signals into proportional output voltages and also calculate, depending on the specification of the charge amplifier, the torques M_x , M_y and M_z .

In General, a 6-Component Measuring System Provides

- The three components of the resultants of all applied forces, their direction but not their location in space
- The three components of the resulting moment vector related to the coordinate origin

Multi-Component Dynamometer up to 4 kN

Technical Data	Туре	9119AA1	9119AA2
Measuring range			
F_x , F_y , F_z	kN	-4 4	-4 4
Calibrated measuring range			
F_x , F_y , F_z	N	0 4 000	0 4 000
	N	0 400	0 400
	N	0 40	0 40
Sensitivity			
F _x , F _z	pC/N	≈–26	≈–26
F _y	pC/N	≈–13	≈–13
Natural frequency			
$f_n(x)$	kHz	≈6,0	≈4,3
f _n (y)	kHz	≈6,4	≈4,6
$f_n(z)$	kHz	≈6,3	≈4,4
Pretensioning direction		horizontal	horizontal
Operating temperature range	°C	-20 70	- 20 70
LxWxH	mm	80x39x26	80x55x26
Weight	g	930	1 350
Degree of protection IEC/EN 60529 (w.	conn. cable)	IP67	IP67
Connection		Fischer flange 9 pol. neg.	Fischer flange 9 pol. neg.

Characteristics

The dynamometer with the smallest mounting dimensions. As a result of the optimized structure and the choice of selected materials, natural frequencies of more than 6 kHz are reached in all 3 force directions (Type 9119AA1). Thanks to the utilization of high-sensitivity crystals in the dynamometer, sensitivities are achieved that are three times as great as those of conventional dynamometers. This enables accurate measurements of the smallest of forces. The horizontal pretensioning direction guarantees minimal influences of thermal effects on the measurement signals.

Accessories

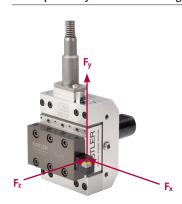
Connecting cable Type 1687B5/1689B5 (3-comp.) Connecting cable Type 1677A5/1679A5 (6-comp.)

Data sheet 9119AA1_003-060

9119AA2_003-055

CAD Download-Service

http://kistler.partcommunity.com


Applications

Cutting force measurement in micromachining, hard turning, high speed machining, ultra-precision machining of brittle materials.

Grinding with dynamometer Type 9119AA2

3-Component System for Measuring Cutting Force During Turning up to 3 kN

Technical Data	Туре	9119AA2 1)
Measuring range		
F_x , F_z	kN	-2 2 ²⁾
F _y	kN	-3 3 ²⁾
Calibrated measuring range		
F _x , F _z	kN	0 2
	kN	0 0,2
F _y	kN	0 3
	kN	0 0,3
Sensitivity		
F _x , F _z	pC/N	≈–26
F _y	pC/N	≈–13
Natural frequency		
$f_n(x)$	kHz	≈1,25 ³⁾
f _n (y)	kHz	≈1,5 ³⁾
$f_n(z)$	kHz	≈2,5 ³⁾
Operating temperature range	°C	–20 70
Clamping surface	mm	55x80
Weight	g	depending on adaptor
Degree of protection IEC/EN 60529 (w.	conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

Characteristics

This is a modular measuring system based on the dynamometer Type 9119AA2. Thanks to the utilization of high-sensitivity sensors, even the smallest of forces can be measured precisely. The assembling of machine adapters and tool holders is simple. A wide variety of conventional adapters that fit the dynamometer Type 9119AA2 is available.

Accessories

Machine adaptor with straight shank adaptor (VDI) Type 9119AB...

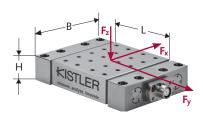
Machine adaptor with Capto Type 9119AC... Machine adaptor with HSK-T Type 9119AH... Toolholder for machine tool Type 9119AE... Toolholder for boring bar Type 9119AF... Connecting cable Type 1687B5/1689B5 (3-comp.)

Data sheet 9119AA2_003-055

CAD Download-Service

http://kistler.partcommunity.com

Applications


Measurement of small forces while turning on lathe with small turrets.

¹⁾ with adaptors Type 9119A...

²⁾ depending on adaptor

³⁾ applies to dynamometer Type 9119AA2 with machine adaptor Type 9119AB30S and toolholder Type 9119AE16, with tool (280 g)

Multi-Component Dynamometer with Top Plate 90x105 mm up to 10 kN

Technical Data	Туре	9129AA
Measuring range		
F_x , F_y , F_z	kN	-10 10
Calibrated measuring range		
F_x , F_y , F_z	kN	0 10
	kN	0 1
	kN	00,1
Sensitivity		
F_x , F_z	pC/N	≈–8
F _y	pC/N	≈–4,1
Natural frequency		
$f_n(x)$	kHz	≈3,5
f _n (y)	kHz	≈4,5
$f_n(z)$	kHz	≈3,5
Pretensioning direction		horizontal
Operating temperature range	°C	0 70
LxWxH	mm	90x105x32
Weight	kg	3,2
Degree of protection IEC/EN 60529 (w.	conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

Characteristics

The low profile and the wide measuring range make this dynamometer the ideal instrument for measurements on precision machine tools. The structure guarantees high natural frequencies in all three force directions. Negative influences of temperature effects during the measurement are significantly reduced by the horizontal pretensioning direction.

Accessories

Connecting cable Type 1687B5/1689B5 (3-comp.) Connecting cable Type 1677A5/1679A5 (6-comp.)

Data sheet 9129AA_000-709

CAD Download-Service

http://kistler.partcommunity.com

Applications

Cutting force measurement with milling, turning, surface grinding and drilling of midsized structural components.

Milling with dynamometer Type 9129AA

3-Component Measuring System for Cutting Force Measurement During Turning up to 8 kN

Technical Data	Туре	9129AA 1)
Measuring range (max. allowable)		
F _x , F _z	kN	-5 5 ²⁾
F _y	kN	-8 8 ²⁾
Calibrated measuring range		
F _x , F _z	kN	0 5
	kN	0 0,5
F _y	kN	0 8
	kN	0 0,8
Sensitivity		
F _x , F _z	pC/N	≈–8
F _y	pC/N	≈–4,1
Natural frequency		
$f_n(x)$	kHz	≈1,5 ³⁾
f _n (y)	kHz	≈1,5 ³⁾
$f_n(z)$	kHz	≈2,5 ³⁾
Operating temperature range	°C	0 70
Clamping surface	mm	90x105
Weight	kg	depending on adaptor
Degree of protection IEC/EN 60529 (w	. conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

Characteristics

Measurement system of modular construction based on the dynamometer Type 9129AA with large measurement range. Not only machine adapters but also tool holders are mounted on the dynamometer with little effort. A wide variety of conventional adapters that fit the dynamometer Type 9129AA is available.

Accessories

Machine adaptor with straight shank adaptor (VDI) Type 9129AB...

Machine adaptor with Capto Type 9129AC... Machine adaptor with clamping wedge Type 9129AD...

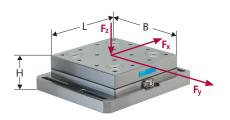
Toolholder for machine tool Type 9129AE... Toolholder for boring bar Type 9129AF40 Connecting cable Type 1687B5/1689B5 (3-comp.)

Data sheet 9129A_000-710

CAD Download-Service

http://kistler.partcommunity.com

Applications


Cutting force measurement while turning on lathe with turrets.

¹⁾ with adaptors Type 9129A...

²⁾ depending on adaptor

³⁾ applies to dynamometer Type 9129AA with machine adaptor Type 9129AB40 and toolholder Type 9129AE25, without tool

Multi-Component Dynamometer with Top Plate 260x260 mm up to 60 kN

Technical Data	Туре	9255C
Measuring range		
F _x , F _y	kN	-30 30
F _z	kN	-10 60
Calibrated measuring range		
F _x , F _y	kN	030
	kN	0 3
F _z	kN	0 60
	kN	0 6
Sensitivity		
F _x , F _y	pC/N	≈–7,9
F _z	pC/N	≈–3,9
Natural frequency		
$f_n(x)$	kHz	≈2,2
$f_n(y)$	kHz	≈2,2
$f_n(z)$	kHz	≈3,3
Pretensioning direction		vertical
Operating temperature range	°C	–20 70
LxWxH	mm	260x260x95
Weight	kg	52
Degree of protection IEC/EN 60529 (w. o	conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

Characteristics

The robust dynamometer for heavy machining with the largest force range of all of the Dynamometers. The coupling to the machine table is accomplished with lateral flanges with oblong holes.

In addition, the dynamometer can be fastened through the center of the four sensors, thus enhancing the natural frequency.

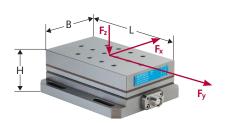
Accessories

Connecting cable Type 1687B5/1689B5 (3-comp.) Connecting cable Type 1677A5/1679A5 (6-comp.)

Data sheet 9255C_003-051

CAD Download-Service

http://kistler.partcommunity.com


Applications

Measurement of large forces, mainly by milling, broaching and surface grinding of large structural components.

Face milling with dynamometer Type 9255C

Multi-Component Dynamometer with Top Plate 100x170 mm up to 10 kN

Technical Data	Туре	9257B
Measuring range		
F _x , F _y	kN	- 5 5
F _z	kN	<i>-</i> 5 10
Calibrated measuring range		
F _x , F _y	kN	0 5
	kN	0 0,5
F _z	kN	0 10
	kN	0 1
Sensitivity		
F _x , F _y	pC/N	≈–7,5
F _z	pC/N	≈–3,7
Natural frequency		
$f_n(x), f_n(y)$	kHz	≈2,3
$f_n(z)$	kHz	≈3,5
Pretensioning direction		vertical
Operating temperature range	°C	0 70
LxWxH	mm	170x100x60
Weight	kg	7,3
Degree of protection IEC/EN 60529 (w. c	conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

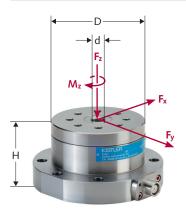
Characteristics

The dynamometer for universal use. The handy size and the ideal measurement range for many applications have made Type 9257B the most frequently built multi-component dynamometer. The connection with the machine table is accomplished with lateral flanges with oblong holes.

Accessories

Connecting cable Type 1687B5/1689B5 (3-comp.) Connecting cable Type 1677A5/1679A5 (6-comp.) Toolholder Type 9403

Data sheet 9257B_000-151


CAD Download-Service

http://kistler.partcommunity.com

Applications

Cutting force measurement with milling, turning, surface grinding and drilling of midsized structural components.

4-Component Dynamometer for Cutting Force Measurement in Drilling

Technical Data	Туре	9272
Measuring range		
F _x , F _y	kN	- 5 5
F _z	kN	-5 20
Mz	N∙m	-200 200
Calibrated measuring range		
F _x , F _y	kN	0 5
	kN	0 0,5
F _z	kN	0 20
	kN	0 2
Mz	N⋅m	0 ±200
	N∙m	0 ±20
Sensitivity		
F _x , F _y	pC/N	≈–7,8
F _z	pC/N	≈–3,5
Mz	pC/N·m	≈–160
Natural frequency		
$f_n(x), f_n(y)$	kHz	≈3,1
$f_n(z)$	kHz	≈6,3
$f_n (M_z)$	kHz	≈4,2
Pretensioning direction		vertikal
Operating temperature range	°C	0 70
DxdxH	mm	ø100xø15x70
Weight	kg	4,2
Degree of protection IEC/EN 60529 (w. o	conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

Characteristics

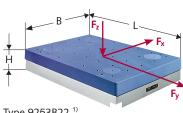
As the only stationary dynamometer, this 4-component dynamometer can, in addition to the three force directions, also measure the torque M_z directly in the center of the dynamometer. This ensures that a precise determination of the torque is achieved.

Accessories

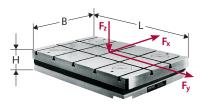
Connecting cable Type 1677A5/1679A5 Toolholder Type 9404

Data sheet 9272_000-153

CAD Download-Service http://kistler.partcommunity.com


Applications

Cutting force measurement mainly with drilling. For training purposes, the device can also be utilized for cutting force measurements with milling or turning.



Force measurement with cutting of quartzes with dynamometer Type 9272

Multi-Component Force Plate with Top Plate 400x600 mm up to 30 kN

Type 9253B23 2)

Technical Data	Туре	9253B22	9253B23
Measuring range			
F _x , F _y	kN	-15 15	-12 12
F _z	kN	-15 30	-12 25
Calibrated measuring range			
F _x , F _y	kN	015	0 12
	kN	0 1,5	0 1,2
F _z	kN	0 30	0 25
	kN	0 3	0 2,5
Sensitivity			
F _x , F _y	pC/N	≈±7,8	≈±7,8
F _z	pC/N	≈±3,7	≈±3,7
Natural frequency			
f _n (x)	Hz	≈580	≈610
f _n (y)	Hz	≈550	≈570
f _n (z)	Hz	≈720	≈570
Pretensioning direction		vertical	vertical
Operating temperature range	°C	-20 70	–20 70
LxWxH	mm	600x400x100	600x400x100
Weight	kg	90	85
Degree of protection IEC/EN 60529	(w. conn. cable)	IP67	IP67
Connection		Fischer flange 9 pol. neg.	Fischer flange 9 pol. neg.

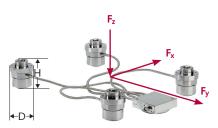
Characteristics

With a cover plate size of 400x600 mm, even larger workpieces can also be set up securely. The measurement platform is mounted through the center of the four feet on the machine tool table. In doing so, in contrast to all other stationary dynamometers, the base plate is dispensed with.

Accessories

Connecting cable Type 1687B5 Connecting cable Type 1677A5

Data sheet 9253B_000-146


Applications

Cutting force measurement with milling and surface grinding of large-sized structural components.

¹⁾ Top plate with tapped hole

²⁾ Top plate with T-grooves 10H12

Multi-Component Sensor Kit for Force Measurement up to 60 kN

Technical Data	Туре	9366CC
Measuring range		
F _x , F _y	kN	–25 25 ¹⁾
F _z	kN	–25 60 ¹⁾
Calibrated measuring range		
F _x , F _y	kN	0 25
	kN	0 2,5
F _z	kN	0 60
	kN	0 6
Sensitivity		
F _x , F _y	pC/N	≈–7,8
F _z	pC/N	≈–3,8
Natural frequency		
$f_n(x)$, $f_n(y)$, $f_n(z)$	Hz	≈200 1 600 ¹⁾
Pretensioning direction		vertical
Operating temperature range	°C	-20 70
DxH	mm	72x90
Max. size of the top plate	mm	900x900
Weight	kg	7
Degree of protection IEC/EN 60529 (w. o	conn. cable)	IP67
Connection		Fischer flange 9 pol. neg.

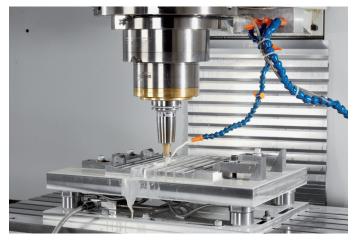
 $^{^{\}mbox{\scriptsize 1)}}$ depending on material and size of the top plate

Characteristics

This ready-to-connect and calibrated multi-component kit allows the user to assemble multi-component measuring plates. Top plate sizes from 300x300 mm to 900x900 mm are possible.

Accessories

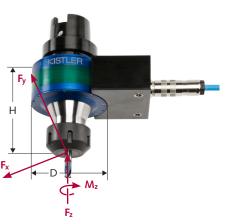
Connecting cable Type 1687B5 (3-comp.) Connecting cable Type 1677A5 (6-comp.)


Data sheet 9366CC_000-681

CAD Download-Service

http://kistler.partcommunity.com

Applications


Cutting force measurement with milling and surface grinding of large-sized structural components.

Milling of Titanium on dynamometer Type 9366CC...

Rotating Dynamometers

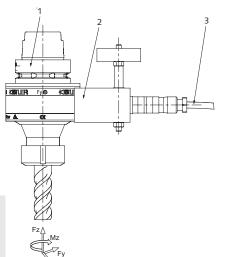
Rotating 4-Component Dynamometer RCD for Cutting Force Measurement up to 20 000 1/min

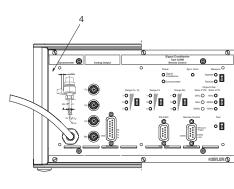
Technical Data	Туре	9170A
Measuring range nominal		
F _x , F _y	kN	–5 5 ¹⁾
F _z	kN	-20 20 ¹⁾
Mz	N⋅m	–150 150 ¹⁾
Speed, max.	1/min	20 000 ¹⁾
Sensitivity (min./max.)		
F _x , F _y	mV/N	≈2/≈20
F _z	mV/N	≈0,5/≈5
Mz	mV/N·m	≈66/≈1 000
Natural frequency	,	
$f_n(x)$	kHz	≈2 ²⁾
$f_n(y)$	kHz	≈2 ²⁾
$f_n(z)$	kHz	≈7,6 ²⁾
Operating temperature range	°C	0 60
DxH	mm	85x95
Weight of Rotor	kg	1,6 ²⁾
Degree of protection IEC/EN 60529 (v	v. conn. cable)	IP67
Signal transmission		non-contacting

depending on spindle adaptor and point of force application

Characteristics

With this Rotating 4-component dynamometer (RCD), measurements are taken of the forces in radial direction (F_x , F_y) and in axial direction (F_z) and the torque in the machining processes with spindle speeds of up to 20 000 1/min. The coolant supply can take place internally. The transmission of the measurement signals and the energy supply takes place contact-free and thus also completely without any wearing. A wide variety of conventional spindle adapters is available for this RCD.


Accessories


Collet chuck Type 9169A...

Data sheet 9170A_000-995

CAD Download-Service

http://kistler.partcommunity.com

Applications

4-Component force and torque measurement on rotating tools during drilling and finishing processes during milling.

- 1 Rotor Type 9170A...
- 2 Stator Type 5236B
- 3 Cable Type 1500A95, L = 10 m
- 4 Signal Conditioner Type 5238B1/B2

²⁾ applies to rotor with spindle adaptor HSK-A63 and integrated ER type collet chuck adaptor (without tool)

Rotating Dynamometers

Rotating 4-Component Dynamometer RCD for Cutting Force Measurement up to 5 000 1/min

Technical Data	Type	9124B
Measuring range nominal		
F _x , F _y	kN	–20 20 ¹⁾
F _z	kN	-30 30
Mz	N⋅m	-1 100 1 100
Speed, max.	1/min	5 000
Sensitivity (min./max.)		
F_x , F_y	mV/N	≈0,5/5
F _z	mV/N	≈0,35/3,5
Mz	mV/N·m	≈9/90
Natural frequency		
$f_n(x)$	kHz	≈1,0 ²⁾
$f_n(y)$	kHz	≈1,0 ²⁾
$f_n(z)$	kHz	≈2,7 ²⁾
Operating temperature range	°C	0 60
DxH	mm	156x55
Weight	kg	6,2 ²⁾
Degree of protection IEC/EN 60529 (w. conn. cable)		IP67
Signal transmission		non-contacting

¹⁾ depending on point of force application

Characteristics

The rotating 4-component dynamometer (RCD) is designed with the large measuring ranges and speeds of up to 5 000 1/min for heavy machining. A wide-variety selection of conventional spindle adapters is available. These are interchangeable, depending on the construction type of the RCD. The same applies for the tool holder. The transmission of the measurement signals is contact-free and without any wearing.

Accessories

Stator Type 5221B2 Cable Type 1500B19 Signal Conditioner Type 5223B... Toolholder Type 9165

Data sheet 9124B_000-122

Applications

4-component force and torque measurement on rotating tools in heavy machining (drilling, milling).

²⁾ applies to rotor without spindle adaptor and without toolholder

Rotating Dynamometers

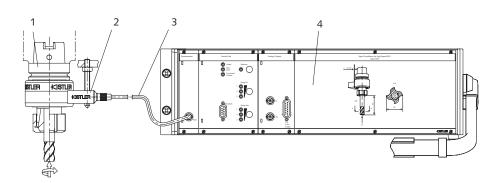
Rotating 2-Component Dynamometer RCD for Cutting Force Measurement up to 25 000 1/min

Technical Data	Туре	9125A
Measuring range nominal		
F_z	kN	-3 3
Mz	N⋅m	- 50 50
Speed, max.	1/min	25 000
Sensitivity (min./max.)		
F_z	mV/N	≈3/30
Mz	mV/N·m	≈185/950
Natural frequency		
$f_n(z)$	kHz	≈5 ¹⁾
$f_n(M_z)$	kHz	≈2,5 ¹⁾
Operating temperature range	°C	0 60
DxH	mm	74x79
Weight	kg	1,5 ¹⁾
Degree of protection IEC/EN 60529 (w. conn. cable)		IP67
Signal transmission		non-contacting

¹⁾ applies to rotor with spindle adaptor HSK-A63 and integrated ER type collet chuck adaptor (without tool)

Characteristics

This rotating 2-component dynamometer (RCD) is suitable for the measurement of axial forces as well as torques in high-speed machining with spindle speeds of up to 25 000 1/min. The coolant supply can take place internally. The transmission of measurement signals and the energy supply are both contact-free. A wide variety of conventional spindle adapters is available for this RCD.


Accessories

Collet chuck Type 9169A...

Data sheet 9125A_000-123

CAD Download-Service

http://kistler.partcommunity.com

- 1 Rotor Type 9125A...
- 2 Stator Type 5235
- 3 Cable Type 1500A37, L = 8 m
- 4 Signal Conditioner Type 5237A1/A2

Applications

2-component force and torque measurement with high-speed machining (milling, drilling).

Amplifying & Acquiring.

Charge amplifier Type 5080A...

Charge Amplifiers

Signal processing is of special significance for the measurement of mechanical variables such as force and torque. Piezoelectric sensors emit a charge that is proportional to the load on the sensor. The charge amplifier converts this charge into standardized voltage signals that can then be evaluated by the downstream signal processing. In order to fulfill the different requirements in everyday practice, Kistler offers a wide spectrum of charge amplifiers that differ from one another essentially in terms of design, number of measuring channels, accuracy and measuring range.

Data Acquisition Systems

PCs are usually used for measurement data acquisition. Here special demands are made of the software for the visualization and evaluation of the force signals with respect to functionality and user-friendliness. Kistler DynoWare is an all-purpose, easy-to-use software that is particularly suitable for force measurements with Dynamometers or single-component and multi-component force sensors. For signal analysis, DynoWare offers the users online visualization of the measurement curves in addition to useful calculation and graphics functions.

DynoWare supports the simple configuration of all of the charge amplifiers and Signal Conditioners available for cutting force measurement. In addition, it offers individual documentation of the measurement and saving of configuration and measurement data.

Charge Amplifier

High-End Multi-Channel Charge Amplifier for Multi-Component Force Measurement

Technical Data	Туре	5080A
Number of channels		1 8
Measuring range FS	pC	±2 2 200 000
Measuring range adjustment		continuos
Frequency range (-3 dB)	kHz	0 200
Output signal	V	±10 / -8 10
Module optional		- charge amplifier
		– Dual Mode
		(charge/Piezotron)
Power supply		
	VAC	100 240
	VDC	11 36
Input signal	Type/	Piezoelectric,
	connector	optional with:
		- BNC neg.
		– Fischer 9 pol. neg.
Output signal	Type/	– BNC neg.
	connector	– D-Sub 15-pol. neg.
Degree of protection IEC/EN 60529		IP40
Interface		– RS-232C
		– USB 2.0
Case, optional		– 19" rack module
		(DIN 41494)
		 Desktop unit with
		support bracket
Other features		Display of mechanical
		measurands

Characteristics

This charge amplifier has outstanding properties that make very precise measurements possible, particularly with small forces. It is exceptionally flexible in construction and can be modified to meet requirements at any time. In addition to purely charge amplifier modules, Dual-mode modules are also available to which sensors with charge output and sensors with integrated electronics (Piezotron®) can be connected.

Accessories

RS-232C cable Type 1200A27 Connecting cable Type 1700A111A2 Connecting cable Type 1700A113A2 Inductive proximity switch Type 2233B

Data sheet 5080A_000-744

CAD Download-Service http://kistler.partcommunity.com

Applications

Laboratory charge amplifier for stationary dynamometers. Specially suitable for micromachining.

Charge Amplifier

Multi-Channel Charge Amplifier for Multi-Component Force Measurement

Technical Data	Туре	5070A
Number of channels		
Type 5070Ax0xxx		4
Type 5070Ax1xxx		8
Type 5070Ax2xxx		8 with 6-component
		summing calculator
Measuring range FS, optional	рС	±200 200 000
	pC	±600 600 000
Measuring ranges adjustment		continuos
Frequency range (–3 dB)	kHz	≈0 45
Output signal	V	±10
Supply voltage	VAC	100 240
Input signal	Type/	Piezoelectric,
	connector	optional with:
		– BNC neg.
		– Fischer 9 pol. neg.
Output signal	Type/	D-Sub 15 pol. neg.
	connector	
Degree of protection IEC/EN 60529		IP40
Interface, optional		
		RS-232C
		RS-232C + IEEE-488
Case, optional		- 19" cassette for
		rack mounting
		– Desktop unit with
		support bracket
		- 19" cassette with
		panel mounting set
Other features		– Display of peak
		values
		- Display of mechani-
		cal measurands

Characteristics

This charge amplifier was developed especially for multi-component force measurement.

Thanks to its large and continuously adjustable measuring ranges and the wide frequency range, this device is suitable in measuring chains with stationary Dynamometers for cutting force measurement.

Accessories

RS-232C cable Type 1200A27 Connecting cable Type 1700A111A2 Connecting cable Type 1700A113A2 Inductive proximity switch Type 2233B

Data sheet 5070A_000-485

CAD Download-Service

http://kistler.partcommunity.com

Applications

Laboratory charge amplifier for stationary Dynamometers for all types of cutting force measurement.

Data Acquisition System

DAQ-System for Data Acquisition of up to 28 Measuring Channels

Technical Data	Туре	5697A
Number of measuring channels		28
Resolution	Bit	16
Sampling rate max.		
with 1 channel	kS/s	1 000
with 8 channels	kS/s	125
with 16 channels	kS/s	62,5
Interface to PC		USB 2.0 Type B, fem.
Dimensions	mm	208x70x249
Weight	kg	2,2

Characteristics

This all-purpose data acquisition system enables the acquisition of analog signals with up to 1 MHz. In combination with the DynoWare software, all Kistler laboratory charge amplifiers and signal conditioners can be controlled. The connection with the PC is via a USB interface. The DynoWare software is obtainable in the package with data acquisition system.

Accessories

RS-232C cable Type 1200A27 Connecting cable Type 1700A111A2 Connecting cable Type 1700A113A2 Inductive proximity switch Type 2233B

Data sheet 5697_000-745

Applications

Together with the DynoWare software, this data acquisition system is used in all types of cutting force measurement.

Software

DynoWare - Windows® Software for Data Acquisition

Technical Data	Type	2825A
Supported charge amplifiers	Types	5011, 5015A,
		5018A, 5017, 5019,
		5070A, 5080A
Supported Signal Conditioners	Types	5223B, 5237A
for rotating dynamometers (RCD)		5238B
Additional information		see Data sheet
Supported operating systems		Windows® XP Windows® Vista Windows® 7 Windows® 8

Windows® is a registered trade mark of Microsoft Corporation

Applications

DynoWare is particularly suitable for the recording and evaluation of cutting force signals.

Characteristics

This simple-to-operate software enables the configuration and control of all Kistler laboratory charge amplifiers and signal conditioners via RS-232C, IEEE-488 or USB. In addition, it offers the simultaneous recording of the measurement signals as well as useful signal evaluation and calculation functions. The measurement data acquired can be readily exported. The software is suitable for the acquisition and evaluation of any and all physical variables.

Accessories

Data acquisition system Type 5697A...

Data sheet 2825A_000-371

Connecting Cables, High Insulation

Cable, 8-Core, Temperature Range -5 ... 70 °C

Technical Data	Туре	1677A5
Connection		Fischer 9 pol. pos., flange
		Fischer 9pol. pos
Length	m	5
Diameter	mm	12,3 (metal sheath)
Number of conductors		8
Used for		6-component measurement

Cable with Angle Connector, 8-Core, Temperature Range –5 ... 70 $^{\circ}\text{C}$

Technical Data	Туре	1679A5
Connection		Fischer angle 9 pol. pos., flange
		Fischer 9 pol. pos
Length	m	5
Diameter	mm	12,3 (metal sheath)
Number of conductors		8
Used for		6-component measurement

Cable, 3-Core, Temperature Range –5 ... 70 $^{\circ}\text{C}$

Technical Data	Туре	1687B5
Connection		Fischer 9 pol. pos., flange
		Fischer 9 pol. pos
Length	m	5
Diameter	mm	12,3 (metal sheath)
Number of conductors		3
Used for		3-component measurement

Cable with Angle Connector, 3-Core, Temperature Range –5 ... 70 $^{\circ}\text{C}$

Technical Data	Туре	1689B5
Connection		Fischer angle 9 pol. pos., flange
		Fischer 9 pol. pos
Length	m	5
Diameter	mm	12,3 (metal sheath)
Number of conductors		3
Used for		3-component measurement

Data sheet 1687B_000-545

Connecting Cables, Low-Resistance

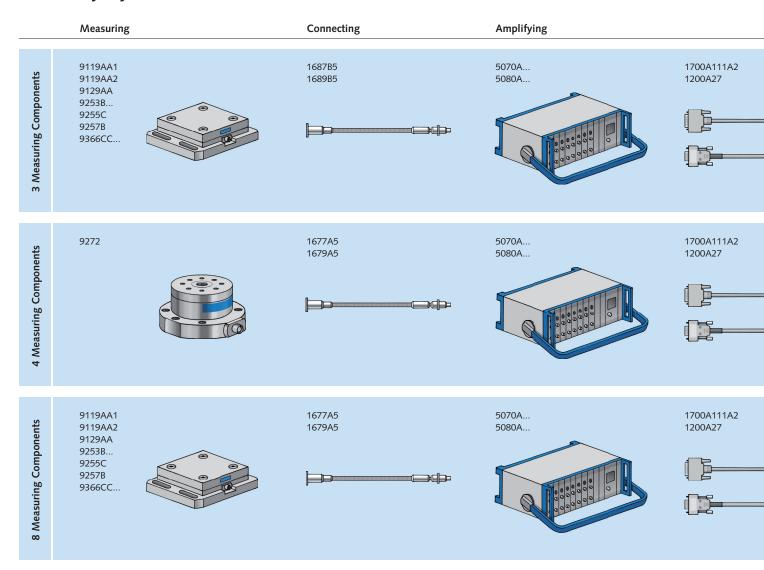
Cable for Transmission of the Measuring Signals

Technical Data	Туре	1700A111A2
Connection		D-Sub 15 pol. neg.
		D-Sub 15 pol. pos.
Length	m	2
Number of conductors		15

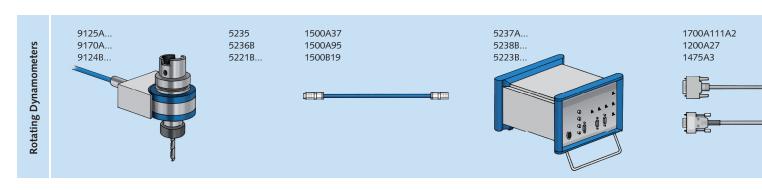
Cable for Transmission of the Measuring Signals

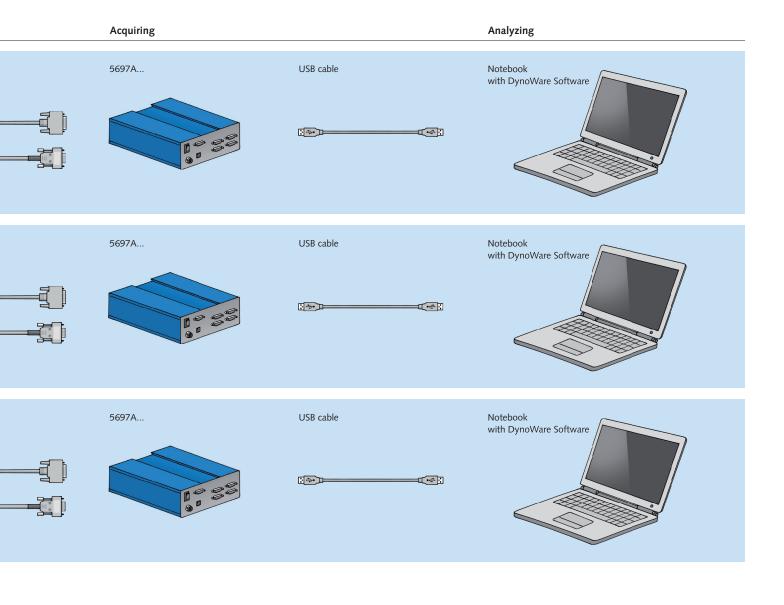
Technical Data	Туре	1700A113A2
Connection		D-Sub 15 pol. neg.
		BNC pos.
Length	m	2
Number of conductors		8

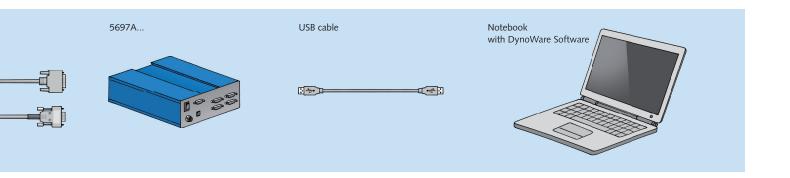
Cable for Transmission of the Communication Signals



Technical Data	Туре	1200A27
Connection		D-Sub 9 pol. pos.
		D-Sub 9 pol. neg.
Length	m	5
Number of conductors		9


Data sheet 5697_000-745


Measuring Chains.


Stationary Dynamometers

Rotating Dynamometers (RCD)

Kistler Group

Eulachstrasse 22 8408 Winterthur Switzerland Tel. +41 52 224 11 11

www.kistler.com

Offices in Europe, Asia, Americas, Australia

